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Abstract. In this paper, we discuss the electron states in narrow pillars (typically of sub- 
micrometre diameter) where the lateral confinement plays an important role in determining 
the transport. The present system, becauseof the highdegreeof symmetry, permits adetailed 
and more simple analysis of magnetic depopulation over other one-dimensional transport 
systems. 

1. Introduction 

The recent advances in the fabrication both of multilayer single crystals and of micro- 
structures within them has permitted ever more detailed studies to be performed on the 
nature of electronic transport in solids. In the last two years, two types of system have 
been particularly studied: the use of split gates and other such gate configurations defined 
over the capping layer of a very high-mobility heterojunction in the GaAs/AlGaAs 
system (Wharam et a1 (1988), Smith et a1 (1988) and references therein), and the use of 
etched pillars to allow transport vertically through multilayers. The former system has 
the advantage that the very long distances (several micrometres) over which electrons 
retain their quantum phase memory between inelastic collisions can to a great extent be 
preserved through the electron beam microfabrication of the gate structures, and striking 
effects such as ballistic transport phenomena and Aharonov-Bohm oscillations have 
been clearly observed. Only one notable example of the use of quantum pillars for 
transport studies has been reported, namely the work of Reed et a1 (1988) on vertical 
transport through a double-barrier diode system within pillars that have external dimen- 
sions of approximately 0.25 pm (square). There they see extra structure in the current- 
voltage characteristics which they associate with the effects of lateral confinement on 
the electron states involved in the resonant tunnelling. Many other studies have been 
performed on the optical properties of quantum pillars where the extra technological 
difficulties of preparing Ohmic contacts to the top of a small pillar are not encountered. 
As we shall see below, this particular system has a high symmetry, and allows the entire 
structure to be handled analytically: indeed analytic approximations of convenience in 
the split-gate analyses are more appropriate here. 

In this paper, some aspects of the electron states relevant to vertical transport in 
vertical pillars are discussed: we restrict ourselves here to a layered doping profile 
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in GaAs, but extensions to multilayers that include AlGaAs alloys, the effects of 
irregularities in the perfect structure or damage from the fabrication process, and the 
possible effects from lateral gating will be described in subsequent papers. Sakaki (1980) 
was the first to introduce the quantum wire concept, and subsequently some estimates 
of the transport properties were evaluated. Here we consider the regime at low tem- 
peratures where the detailed physics is likely first to be investigated. 

2. The simple depletion model 

Consider a vertical pillar of radius a (typically 0.1-1 pm here) etched in a multilayer of 
GaAs where the top and bottom contact layers are Si doped at typically mW3 while 
the intervening (1-2 pm thick) is doped just above the metal-insulator transition (i.e. a 
few lo2* m-3). We assume that a low-resistance Ohmic contact is available to the top 
layer to allow vertical transport studies (see figure 1). Implant isolation is an alternative 
fabrication technique, where those volumes outside the pillar are subject to ion implan- 
tation which damages these regions: the precise potential at the vertical implant bound- 
aries has not been investigated, but the results here may be of relevance to this question. 

In a simple depletion model, we assume that the potential for electrons is pinned ai. 
the surface such that there is a built-in voltage of V ,  = 0.7 e?’. Since the whole question 
of the surface electronic potential of semiconductor microstructures is of direct device 
relevance, e.g. in microwave MESFET and HEMTS, we should hope to invert some of the 
results here to infer the value and variation of the surface pinning of the potential. The 
depletion depth q(2&,Vp/eNd) for an electron of charge e and donor density Nd is 
-30 nm for m-3 doping while it is 1300 nm for m-3 doping density. On this 
scale, in a circular pillar of radius 1 0 . 1  pm, the resistance of any structure will be 
dominated by the thin, nearly depleted, region of the low-doped layer. 

If we assume that the free carrierscollect in the centre of the pillar (see the justification 
below) then the solution to the Poisson equation for the depletion profile in the circular 
geometry is straightforward, namely 

q ( r )  = v, + (Nde/4&,)(y2 - a 2 )  

which also survives with the addition of a term Fz if an electric field F is applied along 
the wire, This result is used in the analysis of their data by Reed et a1 (1988). We shall 
return subsequently to the problem of a varying doping density, i.e. Nd(z), although 
some cases, e.g. a doping superlattice, admit analytic solutions. 

3. The electron states 

The parabolic form of the radial potential is precise within the depletion approximation, 
which makes the solution for the electron wavefunctions straightforward. Furthermore 
the ‘stiffness’ of the confining potential depends only on the measurable Nd, and, as we 
shall see below, it can be modified systematically with an applied magnetic field. The 
analytic simplicity that features here is only an approximation, and a convenience, in 
the split-gate heterojunction work, and in that system only for the lateral rather than 
depth confinement. The one-electron Schrodinger equation 

- (h2,/2WZ*)V2q + (Nde2r2/4&,)7# = E’l).) 

defined with respect to the potential at the centre of the pillar, has two-dimensional 
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Figure 1. A schematic diagram of the structure we 
examine in this paper. 

Figure 2. The Fermi energy as a function of carrier 
concentration: the break in slope occurs as each 
new sub-band is occupied. 

oscillator wavefunctions in the radial direction so the wavefunctions are (Landau and 
Lifshitz 1977, Wallace 1984) 

II, = Dnm(r/a*)lml e~p[-(r/a*)*/2]LL~)[(r/a*)~] exp(im0) exp(ik,z) 

(where m is an integer and n a non-negative integer) with one-dimensional sub-bands 
for the vertical motion characterised by an effective mass m* , while the eigenenergies 
and the mean diameters of the wavefunctions are given by 

E(n, m, k , )  = ho(2n + Im/ + 1) + h2k1/2m* 

w = V(Nde2/2&,m*) g ( a * 2 )  = ~ ( E o , o , o / m * 0 2 )  

and have typical values of 30 meV and 11 nm for m-3 doping and 3 meV and 
30 nm for m-3 doping, justifying the initial assumption for calculating the electron 
distribution. The Fermi energy as afunction of electron density is also simple to evaluate, 
since the number of electrons per unit length is given by integrating the filled bands to 
E F  

l /n )d(2m*/h2) j /v(E - jhw) d E.  Ndna2 = 5 ihm( 
Note that, since hw is proportional to g N d ,  and if we anticipate the magnetic field 
results and use Eo = 2hw as a unit of energy, we can rewrite this equation as 

0.0324a2N!75 = zjg(f -J/2) 
i 

wherefis the Fermi energy expressed in units of E,, and the numerical prefactor includes 
all the fundamental constants, together with a relative permittivity of 12 and an effective 
mass of 0.67me peculiar to GaAs. The prefactorj relates to the degeneracy of sub-band 
energies for different n and m quantum numbers. The occupation of the sub-bands as 
Nd increases for a pillar of 0.1 ym radius is shown in figure 2, and is qualitatively 
similar to that encountered in other qUaSi-lD systems. A self-consistent solution of the 
Schrodinger and Poisson equations, incorporating the electronic potential, will, for 
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many occupied sub-bands, flatten out the potential well in the manner of Laux et a1 
(1988), as described in § 5 below. 

4. Magneto-electron states 

With the presence of a magnetic field along the axis of the wire, the Schrodinger equation 
becomes 

- (h2/2m*)V2q - (e/2m*)(A - p  + p  .A)W + (e2A2/2m*)q + kr2/2q = E y  

where k = (e2Nd/2Es). With the gauge in which A = 0.5B X r ,  the solutions are now 

(here wH = eB/m* and n (a non-negative integer) and m (an integer) are the radial and 
angular quantum numbers of an axially symmetric solution), and the wavefunction is 
given by 

(see Landau and Lifshitz (1977), p 458, for details, although here one must make a 
further, and simple, rescaling to account for the additional confinement from the mag- 
netic vector potential). Note here that the longitudinal mass is unaffected. To proceed, 
we define (Y = m*w$/4k = e2B2/4km* as a measure of the ratio of the magnetic radial 
confinement from the e2A2/2m* term above to the dopant confinement (k); we see that 
the two effects act to provide the overall radial confinement, although the magnetic field 
contributes an extra axial term. The equivalent to equation (1) is now 

0 . 0 3 2 4 ~ ~ N f ~ ~  = d/cf- [ w ( n  + lml/2 + $)  + f i m / 2 ] }  ( 2 )  
nm 

where the reduced Fermi energyfis again measured in terms of the same EO as above, 
and the summation is over all occupied sub-bands. Note that in the limit of (Y = B2+ 0, 
the previous equation (1) is recovered, including all the degeneracy factors. The shifts 
of the tm energy levels are different, and the overall pattern of energy levels is complex, 
especially in the region where a = 1, there being quite different limits when a + 1 and 
(Y % 1. The plot of EF versus B for fixed Nd, as shown in figure 3, is a result of the 
depopulation of the energy levels. 

When a magnetic field is applied at right angles to the wire (say in the x direction) 
then the solution for the Schrodinger equation 

(h2/2m*)V2q - (ifie/m*)Bysq/dz + (e2B2/2m*)y2q + 0.5k(x2 + y2)q  = EV 

is more complex, involving a shift of the y-coordinate frame to a centre at y o  = 
- (heBk,/m*)/(k + e2B2/m*) to give two independent harmonic oscillator solutions (by 
separation of variables), but with different characteristic energies. At the same time, 
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Figure 3. The Fermi energy as a function of magnetic field both parallel and perpendicular 
to the axis of the wires for bulk material doping densities of (a) 1022m-3 and ( b )  1023m-3, 
showing the effects of depopulation of the various magneto-electron ID sub-bands. 

this shift also results in an increase in the k,  effective mass, and the solution now (see 
Landau and Lifshitz 1977, Wallace 1984) is 

E = n , h d ( k / m * )  + n , h d [ k ( l  + 4a) /m*]  + (h2k5/2m*)/(1 + 4a)  

where all terms have their previously defined meaning, and both n1 and n2 are non- 
negative integers. The equivalent to equations ( 1 )  and (2) is 

0.0324a2Nt75 = 2 (1  + 4 a ) d / ( f -  [n,  + ( 1  + 4a)n2 + 1)/2} (3)  
n1.n: 

which has the same limit as a+ 0, but the n l ,  12, and n ,  m are different representations 
of the 2~ harmonic oscillator solutions. Here we note an increase in the effective mass 
in the z direction, which affects the density of states of the ID sub-bands, and which 
should also manifest itself in transport as a positive magnetoresistance, at least in the 
Drude transport regime. The steep decrease in Ef when the magnetic field is per- 
pendicular to the pillar is entirely due to this increase in longitudinal effective mass. The 
magnetic depopulation now proceeds in a different manner than in the case where the 
magnetic field is parallel to the wire (see figure 3) .  

Given the typical systems that have been evaluated in figure 3,  magnetotransport 
could now be used to calibrate the doping density in the thin layer, and extra depletion 
corrections that arise from non-uniform doping depth profiles. If deviations from this 
simple picture are observed in practice, they might arise from one of several complicating 
factors to which we turn below. Note that proton isolation is an alternative method for 
producing the defined vertical pillar as mentioned above, and these techniques may 
prove the nature of the pinning of the potential at the edge of the implant region. 

5. The self-consistent Poisson-Schrodinger equation 

The self-consistent solution of the Poisson-Schrodinger equation involves incorporating 
the potential of the electrons into the Schrodinger equation. In the case of the split-gate 
ID systems (Laux et a1 1988), the self-consistency flattens out the potential in the bottom 
of the well (i.e. the centre of our pillar), and reduces the inter-level energy spacings. 



7640 M J Kelly 

This is a major task, even in the present simple system, but we can make a crude estimate 
of its importance by integrating the Poisson equation for the electrons in the lowest sub- 
band, and calculating the potential energy contribution (in a mean-field sense). The 
solution of 

( l / r ) ( b / S r ) ( r  Svlsr) = P ( Y ) / E ,  = P'n; y ( r )  I ' / E ,  

is 

V(r) = - (e2tz/4~&,)[E1 (u ' /a* ' )  + h( r2 /aV2)  t y ]  

= (e2n/4x~S)[(r/~')2 - 0.2S(r/~')~ + 0.06(r/aX)", . .] 
where E l  is the exponential integral, y = 0.577 . . . , and n = na2Nd is the line density of 
electrons. The contribution to the potential energy is then 

1 eV(r)p(r) r d r  = - (e2n/4ncS)  In 2. 

This represents a significant correction, which implies a widening of the potential wells, 
a reduction in the inter-level separation, and a consequent increase in the relative 
importance of the magnetic fields. Indeed, if one adds this self-consistent potential of 
the electrons to the depletion potential, the r2 term in the potential exactly cancels, at 
least for r < a*. In the range of parameters typical of the systems considered, the change 
from an r2 to a 0.25r4 potential results in separation of the energy levels €or radial 
quantum numbers being reduced to a third of the values in 08 3 and 4 above, and of 
course the potential near the centre of the pillar is flatter, just as in Laux et a1 (1988). Of 
course with electrons in upper energy sub-bands, the self-consistent potential will not 
be as simple as just described. It may be that magnetic depopulation studies might be 
used to probe the self-consistent potentials appropriate to the present system. Further 
work on this aspect is in progress. 

6 .  Screening 

Much of the pertinent work on the dielectric response of a one-dimensional electron gas 
has been performed by Das Sarma and Lai (1985) for narrow heterojunction channels 
appropriate to the split-gate system. In our case further analytic progress is possible, 
with the ground-state Coulomb interaction matrix element being given by 

V(q) = ( 2 e / ~ , )  0.5 exp(-q2/2) exp(-t)/tdt) i 9 2 i 2  

the integral being tabulated, and which gives (for qa < 1) results very close to those of 
the purely ID calculation of Das Sarma and Lai, except that it falls off more rapidly for 
larger q. The more important aspect is that, with many sub-bands occupied, the other 
Coulomb matrix elements are much smaller (e.g. by a factor of approximately 16 even 
within the first excited sub-Sand). The plasmon frequency derived by Das Sarma and 
Lai is of the form 

u p  - w J ( q a ) W  
where KO is the modified Bessel function of the second kind (which can be related to the 
exponential integral form used in the expression of V(q) above). For practical systems 
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the w o  = v ( 2 n e 2 / ~ , m * a 2 )  can be as large as 60 meV, but in the case of many occupied 
sub-bands, a somewhat smaller effective line charge density n (=.na2Nd) is appropriate. 

7. Conclusion 

The quantum pillar offers a simple system for the investigation of quasi-one-dimensional 
electron states and conduction. It has advantages of symmetry over many other quasi- 
ID systems. The large lattice mass compared with those of the conducting polymers such 
as TTF-TCNQ means that the electron-phonon instabilities are unlikely to be seen. The 
results of figure 3 can be modified to describe the recent experimental results (Hansen 
et a1 1989) on depopulation of quantum dots where electrons are confined laterally in 
the same manner as here, but in the vertical direction a heterojunction HEMT-type 
potential confines motion. 
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